if you're all alone, when the pretty birds have flown, honey, i'm still free
take a chance on me

making big announcement
hydrogen: Hello my sweet friends!
helium: Best viewed in chrome.
lithium: Stay or leave, and please tag! Kiss!
beryllium: Showing 3 posts on main page! Click archives roll on top for monthly archives.
boron: refresh
carbon: close windows and study for a test so i can slack 2mrw!
nitrogen: again, remeber to tag! :D
oxygen: filling up space for fun!

chemists.(。◕‿‿◕。)
chloe ko.
christina chow.
mr. doktor's chemistry class
block g


holla'≧∀≦


chemicals.
home.
mrdoktor.




Density and Graphing
Thursday, September 30, 2010 /5:50 PM


Density and Graphing

Density:
-the desity of an object is it's mass divided by it's volume.
D = m/v

Example:
Determine the density of a boulder that ahs a mass of 188kg and a volume of 52L.
D= 188kg / 94L
D= 2 kg/L

Graphing:

All graphs must contain 5 important things:
1. Labelled axis
2. Appropiate Scale
3. Title
4. Data points
5. Line of best fit

3 things can be done when working with graphs:
1) Read the graph
2) Find the slope
3) Find the area under the graph.

Example:
The data below represents the how long 6 students take to get school by walking in a day.

Students             Time [mins]    
  A                        5 mins
   B                        25 mins
   C                        60 mins
   D                        60 mins
   E                         40 mins
   F                         20 mins
  G                        0mins

          Slope: m = rise/slop
   1.  m= 12/3 =2 mins/ student
   2.  m= 0/0 =0 min/student
   3. m= 12/4= 3 mins/student



















Area: 1/2 (b)(h)
J= 1/2 (3)(12)
 = 18
K= lw = (2)(6)
  = 12
L= 1/2 (4)(12)
  =24

Area= 54mins/students

~Christina Chow :]

         

Dimensional Analysis
Tuesday, September 28, 2010 /5:57 PM

Dimensional Analysis:
The process of dimensional analysis is converting between currencies in chemistry it is usually nessary to convert between units. 

Steps:
1. Find a unit equality.
2. Find the conversion factors.
3. Apply conversion factors.
4. Cancel units.

Example:
How many seconds are in 6.7 hours?
Unit Equality                  3600s = 1
Conversion Factor         1 = 3600s
                                     1h
Use the Conversion Factor    6.7h x 60min x 60s
                                           1h     1min
Canel Units                             6.7h x 60min x 60s
                                                          1h  1min
Answer = 24120s

Example:
Convert 872 mg/s into g/min.
872mg    x    1g    x    60s =  52.32g/min                         60mins =1min
s                  1000mg    1min                                                  60s
                                                                                            1min
                                                                                  1000mg = 1g
                                                                                         1g
                                                                                          1000mg 

Example:
Convert 19kJ/h into J/s.
19kJ    x    1000J    x    1h      =  5.27 J/s                 1h = 3600s
 h             1kJ          3600s                                         1h
                                                                                 3600s
                                                                             1000J = 1kJ
                                                                                  1000J
                                                                                    1kJ

~christina :]

Scientific Notation & Significant Digits
Thursday, September 23, 2010 /6:46 PM

SIGNIFICANT DIGITS


for example:
0.00027


examples:
143.0052
88.2010


example:
8.127       --------------4 significant digits
92.32135 --------------7 significant digits
0.0000150 -------------3 significant digits
examples:
9.1121-8.04 = 1.0721 ------------>1.07
2.4+83.2336=85.6336------------>86


examples:
4.11 x 0.0039 = 0.016029 ---------------------->0.0160
85.234 / 9.115608 = 9.350336258-------------->9.3503


SCIENTIFIC NOTATION
example:
3.0 x 10^3 
example:
22,500,000,000      = 2.25 x 10 ^10
                              
examples:
10^7 = 10,000,000
10^-7 =0.0000007


CALCULATORS
       - EXP, EE, X10
                        


~ Chloe Ko (◕‿◕✿)

SI System & Percent Error
Wednesday, September 22, 2010 /6:30 PM

SI System & Percent Error


Today, we learned about the SI System and Percent Error. Mr. Doktor showed us a video on youtube about the powers of ten.


http://www.youtube.com/watch?v=aPm3QVKlBJg

PREFIXES USED WITH SI UNITS AND SI PREFIXES

We learned that we can put a prefix in front of the unit and change the power of it. The SI system uses many prefixes to represent very large or very small numbers.

TERA -----(T)~~~~10^12
HECTO---(h)~~~~10^2
GIGA------(G)~~~10^9
DECA-----(da)~~10^1
MEGA----(M)~~~10^6
KILO-----(k)~~~~10^3
DECI -----(d)~~~~10^-1
CENTI---(c)~~~~10^-2
MILLI------(m)~~~10^-3
MICRO-----(u)~~10^-6
NANO----(n)~~~10^-9
PICO-----(p)~~~~10^-12
FEMTO-----(fm)~~~~10^-15



* REMEMBER!!! DON'T use scientific notation and prefixes together! It becomes VERY confusing. 


We also learned about Experimental Accuracy, that not all measurements are accurate. Any measurement are usually half of the smallest division of the measuring device. We use a plus-or-minus symbol, ± instead. A graduated cylinder has units of 1.0mL. The accuracy of the cylinder is ±0.5mL. As Mr. Doktor showed us in class, when he added water in the graduated cylinder, the water formed a curved top called a meniscus. The volume is taken at the bottom of a meniscus. 


Lastly, we were taught about expression error, absolute error and percent error.


Error is a fundemental part of Science which there are usually 3 reasons for error.
1) Physical Errors in the measuring device
2) "Sloppy" measuring [like not measure correctly]
3) Changing abient conditions
There are two different possibilites, absolute error and percentage error.


ABSOLUTE ERROR
~measured value minus accepted value
Absolute Error= Measured- Accepted


PERCENTAGE ERROR
Its the most common error.
~Percent Error= Absolute/Accepted Value
%Error= (Measured-Accepted) x 100
                     Accepted
AN EXAMPLE MR.DOKTOR gave us was:
You measure the weight of an orange to be 15 N. The actual weight is 17.5 N. What is the percent error?
(15[measured]-17.5[accepted]) x100 = 14%
17.5[accepted]